Generalized Dedekind sums and transformation formulae in function fields
نویسندگان
چکیده
منابع مشابه
Generating functions and generalized Dedekind sums
We study sums of the form ∑ ζ R(ζ), where R is a rational function and the sum is over all nth roots of unity ζ (often with ζ = 1 excluded). We call these generalized Dedekind sums, since the most well-known sums of this form are Dedekind sums. We discuss three methods for evaluating such sums: The method of factorization applies if we have an explicit formula for ∏ ζ(1− xR(ζ)). Multisection ca...
متن کاملGeneralized Stark Formulae over Function Fields
We establish formulae of Stark type for the Stickelberger elements in the function field setting. Our result generalizes a work of Hayes and a conjecture of Gross. It is used to deduce a p-adic version of Rubin-Stark Conjecture and Burns Conjecture.
متن کاملHigher Dimensional Dedekind Sums
In this paper we will study the number-theoretical properties of the expression v1 nkal rcka,, d(p; a I . . . . . an) = ( 1) n/2 ~ cot cot (1) k=l P P and of related finite trigonometric sums. In Eq. (I), p is a positive integer, a~ . . . . . a, are integers prime to p, and n is even (for n odd the sum is clearly equal to zero). There are two reasons for being interested in sums of this type. F...
متن کاملDedekind Cotangent Sums
Let a, a1, . . . , ad be positive integers, m1, . . . ,md nonnegative integers, and z1, . . . , zd complex numbers. We study expressions of the form ∑
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 2017
ISSN: 0022-314X
DOI: 10.1016/j.jnt.2016.09.017